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Review of three studies devoted to the available potential energy (APE) leads to
the proposal of a diagnosis for APE, well-suited for rotating stratified flows within
the primitive equations (PE) framework in which anharmonic effects (due to large
vertical displacements of isopycnals) are permitted. The chosen diagnosis is based
on the APE definition of Holliday & McIntyre (J. Fluid Mech., vol. 107, 1981, pp.
221–225) and uses the background stratification of Winters et al. (J. Fluid Mech., vol.
289, 1995, pp. 115–128). Subsequent evaluation of the APE in a PE direct simulation
(1/100◦, 200 levels) of oceanic mesoscale turbulence indicates that anharmonic effects
are significant. These effects are due to large vertical displacements of the isopycnals
and the curvature of the background density profile.

1. Introduction
For quasi-geostrophic (QG) stratified rotating turbulent flows, characterized by

small vertical displacements of isopycnals, Charney (1971) predicted that one
third of the total energy would be in potential form, in accordance with the
energy equipartition principle. Such equipartition has been confirmed in numerical
simulations of three-dimensional QG turbulence (Hua & Haidvogel 1986; McWilliams
1989). In these flows the available potential energy (APE) diagnosis has a quadratic
form based on the smallness of the isopycnal vertical displacements. There is no
equivalent theory for the primitive equations (PE) framework which allows flow
regimes with large vertical displacements of isopycnals. The potential energy is actually
rarely used and in any case is never diagnosed in PE numerical simulations. This is
because of the lack of an adequate APE diagnosis that would take into account the
non-quadratic, or anharmonic, effects of APE, which require consideration of higher
order terms. In this paper we review in § 2 some studies devoted to the definition of
APE. Their synthesis allows us to propose a more accurate APE definition for the
PE framework. Such diagnosis is used in § 3 to analyse APE properties, in particular
anharmonic effects, in a PE direct numerical simulation (DNS). Conclusions are
offered in the last section.
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Figure 1. Graphical interpretation of the three APE densities in terms of areas, all based on
a reference stratification ρr (z) (thick line): Holliday & McIntyre’s (1980) APE (2.1) of a parcel
ρ at depth z is the sum of the yellow and red areas; the basic APE (2.2) for the same parcel
is the sum of the blue, red and yellow areas; QG APE (2.5) is the yellow area, whereas QG
APE (2.6) is the hatched area. Equation (2.5) is based on the slope of the reference profile
N2

r (zr ) (thin straight line) and (2.6) on the slope of the profile at z. Anharmonic effects (taken
into account in (2.1) and not in (2.5)) are shown by the red area.

2. A review of APE density
2.1. The three definitions of APE density

The potential energy of a fluid parcel with density ρ(x, y, z, t) is ep(z, ρ) = ρgz (with
g being the gravity constant). This energy is never diagnosed because it is neither
quadratic nor linear in the perturbation.

A better quantity to use is APE density proposed by Holliday & McIntyre (1981)
that measures the potential energy with respect to a reference state:

ea(z, ρ) =

∫ z

zr (ρ)

g(ρ − ρr (z
′)) dz′, (2.1)

where ρr (z) is the density profile of this reference state and zr (ρ) is its inverse mapping.
Physically, zr (ρ) is the equilibrium depth of a parcel of density ρ. Equation (2.1)
includes two terms. The first one, gρ�z (where �z = z − zr (ρ) is the vertical
displacement of the isopycnals), is the work of the gravitational force (see Holliday
& McIntyre 1981), and the second,

∫ z

zr (ρ)
ρr (z

′)g dz′, is the work of the pressure force

due to the background stratification. A graphical interpretation of this APE is given
in figure 1 as the sum of the red and yellow areas. It is actually the area delimited by
the curve zr (ρ) and the horizontal and vertical lines emanating from the point (z, ρ).
This APE definition requires no assumption on �z. One important constraint for this
definition is that zr (ρ) must exist for any ρ value present in the fluid, and therefore
the reference state should span the interval from ρmin to ρmax . As noted by Holliday
& McIntyre (1981), this APE density is not quadratic in the perturbation because it
includes higher order corrections, namely anharmonic terms, but it has the essential
property of being definite positive as long as the reference profile is stable.

A more basic expression for APE density is

eW (z, ρ) = gρ�z (2.2)

that retains only the gravitational force term of (2.1). It was used by Winters et al.
(1995) to obtain volume-integrated APE. This basic APE is the sum of the blue, red
and yellow areas in figure 1. If ρb(z) is a volume-preserving rearrangement of ρ(x, y, z)
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(as in Winters et al. 1995), then the two APEs yield the same domain integrated value:

Ea[ρ] =

∫
V

ea(z, ρ(x, y, z, t)) dV =

∫
V

eW (z, ρ(x, y, z, t)) dV. (2.3)

However, if one is interested in the local APE density, then only (2.1) is valid because
the additional work of the pressure force (blue area in figure 1), at leading order
in �z, cancels out the gravitational force (the sum of red, yellow and blue areas in
figure 1) and transforms the linear form (2.2) into the definite positive form (2.1) while
preserving (2.3). The Hamiltonian approach (§ 2.2) provides the unifying framework.

A further simpler and classical expression for APE is the one that uses, for a fixed
density, a Taylor series expansion of (2.1) in �z = z − zr (ρ) (assuming the smallness
of �z), that is

ea(z, ρ) = −g

(
1

2
∂zρr�z2 +

1

6
∂2

zzρr�z3

)
+ O(�z4). (2.4)

The second-order term involves the density gradient and the third-order one the
curvature of the reference density profile. If only the second-order term is retained
(2.4) yields the QG APE density (Pedlosky 1987) that is quadratic and reads

eQG(z, ρ) =
1

2
ρ0

[
Nr (zr )�z

]2
, (2.5)

where ρ0 is the constant density associated with the Boussinesq assumption, and
N2

r (zr ) = − ρ−1
0 g∂zρr (zr ) is the square of the Brunt–Väisälä frequency of the reference

stratification. The right triangle approximating the QG APE is the yellow area in
figure 1 in which the hypotenuse is given by the local slope N2

r (zr ) of the profile.
Equation (2.1) turns out to be the finite amplitude form of (2.5) and therefore a more
accurate definition of APE when �z is large. Conversely, expanding (2.1) in �z, at
fixed z, yields the QG APE density written for the density perturbation �ρ = ρ−ρr (z):

e∗
QG(z, ρ) =

1

2
ρ0

[
g�ρ

ρ0Nr (z)

]2

(2.6)

(hatched right triangle in figure 1). For a non-uniform reference profile (2.5) and
(2.6) differ. In particular, the slopes of the triangles are different. Equation (2.5) is
associated with the Lagrangian view (fixed ρ), whereas (2.6), the most customary, is
associated with the Eulerian view (fixed z).

We define the anharmonic effect by

eanh(z, ρ) = ea(z, ρ) − eQG(z, ρ) (2.7)

(red area in figure 1); at leading order in �z it is proportional to �z3 and the
curvature of the reference profile ∂2

zzρr (see (2.4) and (2.5)). Using e∗
QG instead of eQG

in (2.7) would give an anharmonic effect with opposite sign and a slightly different
magnitude.

The choice of (2.1) was validated by Shepherd (1993) and Bannon (2003) who
furthermore explored the role of the pressure forces with the help of the Hamiltonian
formalism as described in § 2.2. Then the only question to address is the choice of
the reference stratification. This point is discussed in §§ 2.3 and 2.4. The next issue
will be to determine how (2.5) differs from (2.1) in a highly ageostrophic regime that
exhibits large isopycnal deviations and therefore to quantify the importance of the
anharmonic effects. These effects, shown by the red area in figure 1, are quantified
in § 3.
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2.2. Hamiltonian formalism

We follow in this section some ideas developed in Shepherd (1993) to better understand
the role of the pressure force. Prior to the APE definition, two density functionals are
introduced: the total potential energy

Ep[ρ] =

∫
V

ρ(x, y, z, t)gz dV (2.8)

and a Casimir which, for a rest state, reduces to a functional of the density

C[ρ] =

∫
V

fr (ρ) dV, (2.9)

where fr (ρ) is a function defined on the reference state (see Morrison 1998 for a good
introduction on Hamiltonian fluid dynamics). This Casimir is chosen to cancel the
linear contributions in the perturbation. The total APE then reads

Ea[ρ] = Ep[ρ] − Ep[ρr ] + C[ρ] − C[ρr ], (2.10)

which is also called the potential part of the pseudo-energy. In order for the Casimir
to have no impact on the global form of energy, i.e. C[ρ] = C[ρr ], ρr (z) must be a
volume-preserving rearrangement of ρ(x, y, z). This sets a strong constraint on the
reference profile. In this case, the introduction of the Casimir only modifies the APE
local form. Shepherd (1993) gives an extensive review of various APEs associated
with various sets of fluid dynamics equations. Applied to the case of stratified rotating
incompressible flows, hydrostatic or not, the Casimir reads

fr (ρ) = −pr (zr (ρ)) − ρgzr (ρ), (2.11)

where pr (z) is the hydrostatic pressure associated with the reference stratification.
Hence, APE density reads

ea(z, ρ) = ρgz − ρgzr (ρ) − pr (zr (ρ)) + pr (z), (2.12)

recovering readily (2.1). The two first terms on the right-hand side of (2.12) give
(2.2); the next two terms correspond physically to the work of the pressure force. The
cancellation of the linear component by the Casimir is illuminating in (2.12): indeed,
at leading order pr (z) − pr (zr ) ∼ − ρg(z − zr (ρ)). To summarize, eW is the work of
the gravity force; eQG and e∗

QG include the leading-order term of the pressure forces
work; and ea includes the exact work of pressure forces (figure 1).

2.3. Choice of the reference stratification

The choice of a reference stratification ρr (z) in (2.1) is a priori arbitrary provided that
zr (ρ) exists for any ρ value present in the fluid. Incidentally, the use of the customary
horizontally averaged profile ρ̄(z) is not in general possible because parcels at the
surface may have density less than the surface mean density ρ̄(z = 0) (which is the
minimum value for the reference stratification). However, if we want APE to be
the maximal potential energy that can be extracted from a given mass field in an
adiabatic way, then the reference stratification must be the so-called background
stratification ρb(z) (Lorenz 1955). It is basically the flat stratification obtained by an
adiabatic rearrangement of the parcels. Therefore, a reference profile is univocally
associated with any given state, though at the expense of a highly implicit function.
For the case of an incompressible equation of state, this function is simply a sorting of
parcels according to their densities (Winters et al. 1995). The background stratification
ensures that the Casimirs’ contributions globally vanish and that (2.3) holds. It is
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worth noting that other reference stratifications could be used, but then APE would
lose its simple physical interpretation. For a forced-dissipative flow, the concept
of background stratification still makes sense because it can be defined in terms
of statistical properties of the density (cf. § 2.4) and not in terms of an adiabatic
transformation.

To our knowledge, the APE definition of Holliday & McIntyre (1981) – i.e. (2.1) –
has never been diagnosed in models of rotating stratified turbulence. The central goal
of this paper is therefore to study the properties of (2.1) in a DNS of a turbulent flow
with the choice ρr (z) = ρb(z). Before that, let us further explore the properties of this
background stratification.

2.4. The background stratification

By definition, the background stratification ρb(z) is the density field associated
with a given state ρ(x, y, z, t) that minimizes the potential energy under adiabatic
displacements of parcels. Under the incompressible assumption, the background
stratification is also the cumulative probability density function (p.d.f.) of the density
as shown below. Let us introduce the following two cumulative p.d.f.s: the volume
V (ρ) occupied by parcels lighter than ρ

V (ρ) =

∫
ρ ′<ρ

dV ′ (2.13)

and V (z), the volume of water above depth z

V (z) =

∫
z′>z

dV ′. (2.14)

The derivatives of each of these function ∂ρV and Σ(z) = − ∂zV are respectively the
p.d.f. of the density weighted by the volume and the surface of the ocean at depth
z. Since the function V (z) is monotonic, its inverse mapping z(V ) exists. Composing
z(V ) and V (ρ) yields the inverse mapping of the background stratification

zb(ρ) = z(V (ρ)) (2.15)

which is the cumulative p.d.f. of the density. Using the chain rule yields

∂zb

∂ρ
(ρ) = −Σ(z)−1 ∂V

∂ρ
(ρ), (2.16)

which is the density p.d.f. weighted by the thickness, which simplifies, in the case of
a domain with a flat bottom, into

N2
b (zb(ρ)) = −gΣ0

ρ0

[∂ρV (ρ)]−1, (2.17)

where the surface Σ0 = Σ(z) is independent of z. Therefore, in practice, computing
N2

b (zb(ρ)) amounts to computing the density p.d.f. ∂ρV (ρ).

3. Model results
3.1. Description

Numerical simulations of a nonlinear baroclinic unstable flow in a zonal β plane
channel (1000 km long and 3000 km wide, with a depth of 4000 m) centred at
midlatitudes (f = 10−4 s−1) have been performed with the PE code regional ocean
model system (ROMS; see details in Klein et al. 2008). The simulation used in this
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Figure 2. (a) Vertical profiles (with a zoomed-in view of the upper layers) of the horizontally
averaged density ρ̄ at the equilibrium (blue) and the horizontally averaged climatology density
ρclim (green) and their associated background profiles ρb (red) and ρbclim (cyan). (b) N/f
(dimensionless) profiles associated with the different density profiles (identified by their colour).
The increase of N/f at the surface associated with ρ̄ is evidence of the restratification process
at play in this run.

paper has a 1 km horizontal resolution, corresponding roughly to 1/100◦ resolution,
and 200 vertical levels concentrated at sea surface whose thickness exponentially
increases with depth. The simulation, forced by a linear restoring (50 days) of its
mean zonal state to a prescribed climatological state (figure 2), is integrated until the
statistical equilibrium is reached (600 days from the original zonal state triggered by
a small random noise). Upper-layer dynamics are further explored by Klein et al.
(2008).

3.2. Background stratification

Figure 2 highlights that the horizontally averaged density profile ρ̄ is very different
from the background density profile ρb in the upper layers, but the two coincide in
the abyss. However, when vertically integrated, these two profiles yield the same mass.
Furthermore the background stratification (ρb) is close to the one calculated from the
climatological state (ρ∗

b ; figure 2). There is no physical necessity because the forcing
is basically diabatic and so may modify the background stratification. This property
is due to the particular choice of forcing that drives continuously the density towards
the climatology value.

3.3. Statistical properties of APE

Because zr (ρ) is monotonic, APE density can be expressed in terms of either (z, ρ) or
(z, zb), using a composition, namely ẽa(z, zr ) = ea(z, ρr (zr )), with

ẽa(z, zb) =

∫ ρb(zb)

ρb(z)

(z − zb(ρ
′))g dρ ′. (3.1)

The structure of APE for a fluid parcel in the parameter space (z, zb) is sketched by
the isocontours in figure 3(a). The zero contour is along the diagonal. In the vicinity
of the diagonal ẽa(z, zb) is locally quadratic in the transverse direction, which means
that anharmonic effects vanish along the diagonal (figure 3b) and that APE matches
the QG APE. For large vertical displacements (|�z| = |z − zb|) APE deviates from a
harmonic potential, which is the signature of anharmonic effects.
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Figure 3. (a) Thin isocontours of APE ẽa(z, zb) superimposed on the joint p.d.f. of APE
(log scale in colour), expressed as functions of z and zb . (b) Zoomed-in view of the upper
right corner with relative importance of anharmonic effects eanh/ea (isocontours every 0.1,
dashed for negative values, thick for zero value) superimposed on the same-coloured p.d.f.
Isocontours are solely determined by ρb(z), whereas colours result from the three-dimensional
oceanic turbulent simulation. When looking at constant zb (i.e. on a given isopycnal), the joint
p.d.f. provides the p.d.f. of the depth z of this isopycnal: for instance the zb = 400 m isopycnal
spreads from roughly 800 m depth to the surface.

The joint p.d.f. of APE from the ocean turbulent eddy field (superimposed in
colourscale in figure 3) has been computed by scanning every model grid cell,
associating with each the pair (z, zb(ρ)) and then counting the number of grid cells
with a given (z, zb(ρ)). We have a total of 6 × 108 grid cells in the simulation domain.
Below 500 m the p.d.f. peaks around the main diagonal with a small transverse width.
For upper layers, above 500 m, the p.d.f. peak deviates from the diagonal with the
deviation increasing as z tends to zero. This deviation illustrates anharmonic effects
in the numerical simulation due to the large �z. These effects are important (locally
70 % of total APE) at the surface at which there are relatively dense water outcrops,
corresponding to vertical displacements of up to 800 m. Interestingly, they are also
important below the thermocline, at 600 m depth, where they exceed 70 % of the
total APE. The sign of the anharmonic effect at 600 m depth (figure 3b) is directly
related to the convexity of the background profile (figure 2).

3.4. APE in the physical space

At fixed z, APE is a functional of density only and at leading order is captured by the
QG-like expression (see (2.5) or (2.6)). However, deviations from a purely QG APE
are not so small (figure 4b) and reach 50 % at which density anomalies are large.
Anharmonic effects are negative in the south part of the domain in which the vertical
displacements of the isopycnals are small, and they are positive in the north part of
the domain in which the vertical displacements of the isopycnals are large. This is
consistent with the isocontours of figure 3(b) that display a small negative region in
the upper right part and a positive region in the upper middle part. At a deeper level,
the anharmonic effect continues to be of the same order as at the surface. It is only
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Figure 4. (a) Snapshot of the surface in the central region of the jet of APE density ea/ρ0

(in m2 s−2). (b) Relative importance of anhharmonic effects eanh/ea (dimensionless) estimated
from (2.1) and (2.7).

at 800 m depth that the anharmonic effect drops to a few per cent, so that APE can
be considered the square of the density anomaly.

To further investigate how APE varies vertically we define an equivalent
perturbation for APE density

θ=̂
�z

|�z|

√
2ea

ρ0

(3.2)

that can be either positive (�z > 0) or negative (�z < 0) and can be compared with
the QG perturbation

θQG = Nb(zb(ρ))[z − zb(ρ)]. (3.3)

With these definitions, APE densities read ea = ρ0θ
2/2 and eQG = ρ0θ

2
QG/2.

On a zonal mean section, APE has nothing in common with density, though it is
closely related to it. On one hand density (figure 5a) reflects the structure of the mass
field, with classical features: a thermocline, outcropping of isopycnals, meridional
gradient. On the other hand, θ reflects the primary source of energy of the flow linked
to the density anomalies (figure 5b). Indeed, both the minimum and the maximum of
θ located at depth on the southern and northern flanks of the jet are associated with
Ertel potential vorticity (PV) extrema (not shown), leading to a strong meridional PV
gradient that is responsible for the persistency of the baroclinic instability conditions.
These extrema are sustained by a balance between the forcing feeding them and
the baroclinic instability relaxing them. One interesting feature is that when the
climatology contribution is subtracted from θ , the resulting field (figure 5c) displays
chimney-like vertical structures of APE whose depth extent attains 1000 m, with a
width less than 100 km. This indicates the strong impact of the mesoscale turbulence
on APE.

Figure 5(d ) reveals that APE is larger than its QG counterpart in the first 300 m
below the surface (except for an area very close to the surface in the southern part
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Figure 5. Zonal mean snapshots in the central part of the channel of (a) ρ (in kg m−3),
(b) θ (in m s−1), (c) θ − θclim (in m s−1) and (d ) eanh/ea (dimensionless).

of the domain). On the other hand it is smaller than its QG counterpart between
300 m and 700 m. Again these positive and negative deviations of APE from its
QG expression, which attain more than 50 %, are consistent with the isocontours of
figure 3(b) that display, on the average, a positive value above 300 m and a negative
value between 300 m and 700 m. This means that the amplitude and sign of these
anharmonics effects are entirely determined by the background density profile and
mostly by its curvature as discussed in § 2.1.

3.5. APE in the spectral space

The definition of θ proposed in (3.2) also allows the computation of the APE spectra
at different depths:

ea(k, z) =
1

2

∫ 2π

0

|θ̂ |2k dϕ, (3.4)

where θ̂ (k, ϕ, z) is the horizontal Fourier transform of θ(x, y, z) in polar coordinates.
Figure 6(a) shows the distribution of APE in a spectral space. For a given horizontal
scale, the maximum of APE is at the surface, because of the surface-intensified nature
of the turbulence. APE at sub-mesoscale (k > 50) is also intensified at the surface but
decreases rapidly with depth. More precisely, in the upper 100 m, APE isocontours
are straight and inclined, indicating that the decay of APE is exponential (because
the vertical scale is a log scale). This exponential decay of surface dynamics is well
captured by the surface quasi-geostrophic (SQG) theory. A small exponential decay
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Figure 6. (a) APE horizontal spectrum (isocontours of log10 θ̂2) as a function of depth. Upper
500 m are in log scale in order to emphasize the vertical exponential decay near the surface.

(b) Similar to (a) but for the ratio of QG APE and APE (isocontours of log10(θ̂2/θ̂2
QG).

is also present at the bottom due to the bottom-trapped dynamics analogous to the
SQG dynamics. Below the thermocline, APE decreases rapidly with k, indicating a
QG regime. These results are in accordance with the results of Klein et al. (2008)
that reveal a k−2 spectrum slope for the density near the surface instead of a k−4.5

spectrum slope in the abyss.
The anharmonic effects have a relatively simple structure in the (k, z) space

(figure 6b). They are mostly negative for large k and positive for smaller k in
the upper layers. Again this is consistent with the isocontours of figure 3(b). Indeed,
the Burger number being close to one in this simulation (Klein et al. 2008), small
horizontal structures also have a small vertical extent, allowing only small vertical
displacements of the isopycnals. The opposite is true for the larger scale structures.
Figure 3(b), on the other hand, reveals that anharmonic effects in the upper 300 m are
negative in the upper right part in which small displacements of the isopycnals are
allowed and positive in the middle part in which large displacements of the isopycnals
are allowed. Below the thermocline, QG APE is too large; i.e. anharmomic effects are
negative, at all scales. Below 1000 m, anharmonic effects are negligible.

4. Conclusion
We have confirmed that APE density as defined by Holliday & McIntyre (1981)

takes into account terms that are missing from the basic and the QG definition of APE
given by Pedlosky (1987). As such it is the more appropriate within the framework of
the primitive equations. This remains true even when the hydrostatic assumption is
relaxed. Like every APE, it is based on the reference density profile. We have shown
that not every profile suits APE. Following Lorenz’s (1955) physical interpretation of
APE, we used the background density profile obtained by an adiabatic rearrangement
of the parcels. We have shown that for an incompressible equation of state, this
profile is the cumulative p.d.f. of density. This property allows the computation of
the background stratification in a more complex geometry. Using these results we
have estimated APE density in a DNS of a rotating stratified turbulent flow that
uses a PE model. To our knowledge, such an estimation in a PE simulation has
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never been done before. The estimated APE density significantly departs from its QG
counterpart because of the strong isopycnal displacements. But it is essentially the
curvature of the background density profile that determines the amplitude and the
sign of the departure of APE from its QG counterpart, known as anharmonic effects.
These anharmonic effects are significant principally within the upper oceanic layers.
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